Sea Surface Salinity remote sensing from Space: A new tool to monitor the oceanic freshwater cycle

Nicolas Reul¹, ¹IFREMER, Laboratoire d'Océanographie Spatiale, France

J. Tenerelli², J. Boutin^{3,}B.Chapron¹, Y. Kerr⁴

²CLS, Brest, France ³LOCEAN, Paris ⁴ CESBIO, Toulouse

eesa

•Scientific rational behind Sea Surface Salinity measurements from Space

- Measurement plateforms & principles
- Examples of the Spaceborne Systems Capabilities
- •Perspectives

In Situ measurements of Salinity

Profilers from the Argo network

Thermo-salinographs Installed onboard reasearch Vessels and ships of opportunity

Gliders

Surface 'Drifters'

Equipped Mammals

Historical Density of surface observations 1874-2002

Number of Observations by 1° Square

White - N < 10 Blue - 10 < N < 100 Green- 100 < N < 1000 Red - 1000 < N

F. Bingham et al, 2002

1.3 million SSS observations distributed over the global ocean since 125 years:

 \checkmark No data in 27% elementary oceanic 1° x1° area, not accounting for arctic zones.

 \checkmark 70% of these surfaces present at most 10 historical observations

 $\checkmark 28\%$ of all observations were sampled in the coastal domain

✓ Up to 1960, there was no more than 10,000 observations/year ⇔ 1 observation per 4°X4° cell

✓ Since 2002, very net increase in the density of measurements (ARGO network)

Understanding Interactions between Ocean Circulation, the Global water cycle and the Climat by measuring Sea surface Salinity

180

Flux Net Evaporation-Précipitations [mm/an] 40 0.5 0 -0.5

The salinity variations are determined by Precipitation, Evaporation, River Run-off, Sea Ice Melting and pounding

Salinity affects sea water density which governs the thermo-haline circulation and the climat

Spaceborne Measurements of SSS shall help Better estimating surface currents from Altimetry

Sea Surface salinity: a climatic indicator

Trends in Sea Surface Salinity in Pacific and Atlantic Oceans

Trends in SSS in the Antarctic Ocean

Trends in Sea Surface Salinity in the Western Tropical Pacific Warm Pool

The surface extension of the Warm Pool (equivalent to Europe Area with temperatures>28°C) is associated with a surface salinity freshening

Temperature

Salinity

In situ coverage

Cravatte et al., 2009

Large scale freshening at high latitudes

The spicy waters that change El Niño

Christophe Maes, 2002 Singh et al., 2010

Salinity of the upper ocean play an important role (barrier-layer effects) in the on-set of the phenomenon. Monitoring this variable will help in better predicting El Niño.

SSS & CO₂

Ocean is the first global think of carbone, however it is saturated and start acidifying

Kortzinger, 2000

Through its links with Alcaliny (ability to resist to an acidic attact),

Sea surface salinity is a key parameter of the CO2 fluxes at the oceanic surface

Surface Salinity & fishes

Salinity is of the key environmental factor for the living of fishes and marine biology

Why mesurearing SSS from Space ?

•Key Role of salinity for the dynamics of the oceans, biology, bio-chemistry and climate

✓ Global freshwater cycle proxy (freshwater fluxes E-P-R at the surface)

✓ Thermo-haline Circulation

✓ Coupled Ocean-atmosphere system (e.g., El Niño, CO_2 oceanic absorption rate)

✓ Fish stocks

Lack of global SSS data

✓ Weaknesses of climatologies & limits of operational *in situ* observing systems

GOOS (Global Ocean Observing System) scientific plan :

« There is a clear need to obtain spaceborne measurements of SSS» with an accuracy on the order of ~0.1-0.2 psu for monthly average estimates over 100-200 km²

Two dedicated Satellite missions

AQUARIUS/SAC-D

Launched November 2009

Launched August 2011

Measurement principles

How can one detect sea salt variations of 0.1 g/kg in the first centimeters below the ocean surface from an altitude of 750 Km?

A change of state in the Hydrogen atom energy generates micro-wave electromagnetic radiations at a frequency of 1420 MHz (L band) ≡length 21 cm known as the « Hydrogen line »

21 cm

Hydrogen being one of the first constituent of the sun And of most of the stars, Earth is constantly illuminated by L-band radiations

TEMPERATURESALINITY ROUGHNESS

Retrieving SSS from Space: a challenge !

How SMOS works?

Interferometry

- Spatial Resolution is determined by the maximum distance between antenna elements
- Correlation products $s(1)^*s(2) \rightarrow Visibility$ function $V(D/\lambda)$
- Inverse Fourier Transform $V \rightarrow T_B(\theta)$

Présentation SMOS CATDS

YHK October 2010

First Images in X and Y pol

But A big problem:

The protected L-band is not well protected...

Issue of Radio Frequency

Interferences -> Europe

YHK October2010

P. Richaume

The RFI contamination issue Over the oceans

Annual Variance of the surface emissivity over 2010 from 15° to 55° incidence -both passes All area with variances higher than 0.03-0.04 are clearly RFI contaminated zones

A considerable data processing is required to meet the mission requirements

Brightness temperatures have to be cleaned out for RFIs

Very accurate calibration is needed:=> radiometer stability (sky targets, Dome C)

Image reconstruction process is very complex (aliases, sun radiation effects,..) and not yet fully understood which introduce artefacts

Geophysical corrections are numerous (sst, roughness, extra-terrestrial, inosphere) \Rightarrow Source of flaws in the algorithm

Low accuracy swath SSS acquisition need to be merged to build up more accurate composite products:

This is done at Level 3 in dedicated national centers:

The french CNES/CESBIO/IFREMER ground segment CATDS (Ifremer/Brest) & & The Spannish CP34 (Barcelona)

The Centre Aval de Traitement des Données SMOS Research Level 3 Composite Sea Surface Salinity products

CATOS

Cones

<u>3 type of Products for year 2010:</u>

•Monthly composite SSS at 0.25°, 0.5° and 1° degree resolution:

The Centre Aval de Traitement des Données SMOS Research Level 3 Composite Sea Surface Salinity products

Products for year 2010:

•10 –day composite at 0.25°, 0.5° and 1° degree resolution:

Ifremer

S 10-Day Composite from May 01 through May 10-2010-0.25°x 010-Day Composite from May 01 through May 10-2010-0.5°x (10-Day Composite from May 01 through May 10-2010-1°x

The Centre Aval de Traitement des Données SMOS Research Level 3 Composite Sea Surface Salinity products

Products for year 2010:

•Daily running 10-days composite at 0.25 degree resolution

CATDS Level 3 Composite Sea Surface Salinity Research products RELEASE and ACCESS

OFFICIAL RELEASE of the « Research » Products:

•Netcdf Data access at <u>http://www.catds.fr/</u> access under =>Data=>Research Products from Expertise Centers

•ftp: eftp.ifremer.fr, password protected

•Free access upon email request : <u>support@catds.fr</u>

a 🍌 2010	* Nom	Modifië le	Type
4 퉲 10 Day Composite	SSS_SMOS_13_10day_0.50deg_CATDS_CECOS_2010.001_2010.010_V01.nc	20/09/2011 20:25	Fichier NC
	SSS_SMOS_L3_10day_0.50deg_CATDS_CECOS_2010.011_2010.020_V01.nc	20/09/2011 15:06	Fichier NC
Half_degree	SSS_SMO5_L3_10day_0.30deg_CATDS_CECO5_2010.021_2010.030_V01.nc	20/09/2011 15:06	Fichier NC
One degree	SSS_SMOS_L3_10day_0.50deg_CATDS_CECOS_2010.031_2010.040_V01.nc	20/09/2011 15:06	Fichier NC
	SSS_SMOS_L3_10day_0.50deg_CATDS_CECOS_2010.041_2010.050_V01.nc	20/09/2011 15:06	Fichier NC
🃗 Quarter_degree	SSS_SMO5_L3_10day_0.50deg_CATDS_CECO5_2010.051_2010.060_V01.nc	20/09/2011 15:06	5 Fichier NC
A Daily Running 10days Composite	SSS_SMO5_L3_10day_0.50deg_CATD5_CECO5_2010.061_2010.070_V01.nc	20/09/2011 15:06	Fichier NC
- Joury_Running_roudys_composite	SSS_SMOS_L3_10day_0.50deg_CATDS_CECOS_2010.071_2010.080_V01.nc	20/09/2011 15:06	Fichier NC
퉬 Quarter_degree	SSS_SMO5_L3_10day_0.50deg_CATDS_CECO5_2010.081_2010.090_V01.nc	20/09/2011 15:06	Fichier NC
A Manthly Commercity	SSS_SMOS_L3_10day_0.50deg_CATDS_CECOS_2010.091_2010.100_V01.mc	20/09/2011 15:06	Fichier NC
= Monthly Composite	SSS_SMOS_L3_10day_0.50deg_CATDS_CECOS_2010.101_2010.110_V01.nc	20/09/2011 15:06	Fichier NC
Half_degree	SSS_SMOS_L3_10day_0.50deg_CATDS_CECOS_2010.111_2010.120_V01.nc	20/09/2011 15:06	Fichier NC
	SSS_SMOS_L3_10day_0.50deg_CATDS_CECOS_2010.121_2010.130_V01.nc	20/09/2011 15:06	Fichier NC
One_degree	SSS_SMOS_L3_10day_0.50deg_CATDS_CECOS_2010.131_2010.140_V01.nc	20/09/2011 15:06	Fichier NC
Ouarter degree	SSS_SMOS_L3_10day_0.50deg_CATD5_CECOS_2010.141_2010.150_V01.nc	20/09/2011 15:06	Fichier NC
	555_5MOS_L3_10day_0.50deg_CATD5_CEC05_2010.151_2010.160_V01.nc	20/09/2011 15:06	Fichier NC
	SSS_SMOS_L3_10day_0.50deg_CATDS_CECOS_2010.161_2010.170_V01.nc	20/09/2011 15:06	Fichier NC
	SSS_SMOS_L3_10day_0.50deg_CATDS_CECOS_2010.171_2010.180_V01.nc	20/09/2011 15:06	Fichier NC

•Documentation : Product User Manual & Validation Report, ATBD

•Reprocessed Year 2011 Jan->September: should be accessible end-october

The L3 SSS CATDS-CECOS Products Product Validation & Oceanographic consistency

Exemple Monthly products at 0.5° Res:

January to June 2010

SSS Monthly Composite Jan 2010-0.5°x0.5° SSS Monthly Composite Feb 2010-0.5°x0.5° SSS Monthly Composite Mar 2010-0.5°x0.5°

SSS Monthly Composite Apr 2010-0.5°x0.5° SSS Monthly Composite May 2010-0.5°x0.5° SSS Monthly Composite Jun 2010-0.5°x0.5°

Exemple Monthly products at 0.5° Res: July to December 2010

SSS Monthly Composite Jul 2010-0.5°x0.5° SSS Monthly Composite Aug 2010-0.5°x0.5° SSS Monthly Composite Sep 2010-0.5°x0.5°

SSS Monthly Composite Oct 2010-0.5°x0.5° SSS Monthly Composite Nov 2010-0.5°x0.5° SSS Monthly Composite Dec 2010-0.5°x0.5°

Validation Still on going but ...

Averaging at the same spatio-temporal resolution than the L3 products

Validation of the Monthly L₃ SSS composite

Figure 4: Exemple of the Probability distribution function of the 95% percentile of the Δ SSS data differences: Δ SSS= SSS_{*in situ*}-SSS_{SMOS} between *in Situ* SSS and co-localized SMOS L3 SSS, considering all months of 2010 and the Global ocean data. Here *mu*=0.0081 is the mean Δ SSS and σ =0.365 is the standard deviation.

TABLE III: **SMOS LEVEL 3** 1°x1° monthly composite Δ SSS 95% percentile error Statistics (pss) over the complte year 2010

STATISTICS	GLOBAL OCEAN	ARCTIC OCEAN	NORTH ATLANTIC	TROPICAL ATLANTIC	SOUTH ATLANTIC	NORTH PACIFIC	TROPICAL PACIFIC	SOUTH PACIFIC	INDIAN OCEAN	SOUTHERN OCEAN
Mean	0.0060	1.6256	-0.0473	0.0698	0.0528	0.0132	0.0170	-0.0151	0.0279	-0.0266
Standard Deviation	0.2876	1.0250	0.5720	0.2775	0.2580	0.3046	0.2525	0.2095	0.2470	0.2559
Skewness	-0.1261	0.4331	-0.4957	0.0663	-0.1922	-0.2166	-0.1290	-0.0055	0.0734	-0.0131
Kurtosis	3.5370	2.2593	4.7825	3.3019	2.7914	3.6553	3.0009	2.7185	3.1277	2.7806

Averaged Spatial Distribution of $\Delta SSS = SSS_{in \ situ} - SSS_{SMOS}$

Figure: Spatial distribution of $SSS_{in \ situ} - SSS_{SMOS}$ monthly composite data at 0.25° resolution after averaging the Δ SSS 2010 data over 1°x1° boxes. Left: Map centered on the pacific. right: same map but centered on the Atlantic. Note that positive values signify $SSS_{SMOS} < SSS_{in \ situ}$

Temporal evolution of the statistics of the

0.4

0.3

0.2

Temporal evolution of the error standard deviation per oceanic zones Atlantic Ocean

Temporal evolution of the error standard deviation per oceanic zones Pacific Ocean

Temporal evolution of the error standard deviation per oceanic zones: Indian & Southern Oceans

Major Tropical Oceanic freshwater Pool as seen from space

The NorthWestern Tropical Atlantic freshwater Pool

Local Ocean Currents

SSS Spatio-temporal monitoring from SMOS year 2010, 0.25 degree resolution, 10 days SSS Averaged from Feb 26 through Mar 08

Animation available at http://www.salinityremotesensing.ifremer.fr

GeoTraces Campaign

SMOS SSS Validation

Extensive validation has been conducted

Monthly products: rms ~0.3 psu 10 days/0.25°: rms ~0.5 psu

Comparison with Thermosalinograph data aquired on board ships of opportunity

Consistency of SMOS SSS with Plume vertical Structure

Observed seasonal cycle in the SSS/Acdm relationship

Annual average

Seasonal average

2011/12/01

Strong potential of SMOS SSS to help improving our understanding of Tropical Atlantic Instability waves

2 Major pathways for the freshwater surface layer advection

SSS Averaged from Jun 04 through Jun 1

NorthWestward

SSS Averaged from Sep 07 through Sep 17

Eastward

2011/12/01

Lagrangian transport NorthWestward

SSS SMOS + Altimeter currents 25/12

2011/12/01

Eastward

SSS SMOS + Altimeter currents 25/12

CDM/SSS relationship variability along the 2 pathways

Consistent with seasonal cycle variability

2011/12/01

Salt Transfer Induced by Strong Ocean-Atmosphere Interactions under Tropical cyclones

Amazon and Orinoco River Plumes and NBC Rings: Bystanders or Participants in Hurricane Events?

AMY FFIELD=> J CLIM 2007

JOURDAL OF CLIMATE

All Storm Paths

FIG. 3. The number of 1950 through 2003 "best track" tropical storms and hurricanes per one degree square (smoothed by a $3^{\circ} \times 3^{\circ}$ block average). The tropical cyclones initially travel westward.

TABLE 1. The distribution of 1960–2000 hurricanes by location. With increasing category (hurricane strength), an increasing (decreasing) percentage of hurricanes pass through (outside) the plume region. For example, for category 5 hurricanes, 68% passed through the plume region, while only 32% passed outside the plume region.

Hurricanes 1960–2000	Through plume		Outside plume		All hurricanes
	No.	No./total	No.	No./total	Total
Category 1	17	17%	84	83%	101
Category 2	13	29%	32	71%	45
Category 3	18	45%	22	55%	40
Category 4	18	60%	12	40%	30
Category 5	13	68%	6	32%	19

Figure 2: Two SMOS microwave satellite-derived SSS composite images of the Amazon plume region revealing the SSS conditions (a) before and (b) after the passing of Hurricane Igor, a category 5 hurricane that attained wind speeds of 136 knots in September 2010. Color-coded circles mark the successive hurricane eye positions and maximum 1-min sustained wind speed values in knots. Seven days of data centered on (a) 10 Sep 2010 and (b) 22 Sep 2010 have been averaged to construct the SSS images, which are smoothed by a 1° x 1° block average.

Reul et al=> in preparation J CLIM 2012

Figure 4: Surface wakes of Hurricane Igor. Post minus Pre-hurricane (a) Sea Surface Temperature (Δ SST) (b) Sea surface Salinity (Δ SSS), (c) Sea Surface Density ($\Delta \sigma_0$) and (d) Sea Surface CDOM absorption coefficient .The thick and thin curves are showing the hurricane eye track and the locii of maximum winds, respectively. The dotted lines is showing the pre-hurricane plume extent. Δ SST, Δ SSS, $\Delta \sigma_0$ wakes were only evaluated at spatial locations around the eye track for which the wind exceeded 34 knots during the passing of the hurricane.

Observed ocean stratification differences

Figure 11: Vertical Profiles of Density measured before the storm (red circles) and after the storm (black squares) at four ARGO floats with WMO # (a) 4900818, (b) 4900321, (c) 6900590 and (d) 4900819. For each Argo float, the pre-storm stratification represented by the Brunt-Vaisala frequency N(z) is illustrated by the blue dotted curves. The depths D_{σ} and D_{T-02} of the pre-storm mixed layer (depth where $\sigma(z=0)-\sigma(z=10m) > \Delta\sigma$ equivalent to 0.2 degC decrease in T at salinity=S(z=10m) are indicated by horizontal dashed lines. The thickness of the pre-storm barrier layer is defined as D_{T-02} -D_{σ} and is indicated by the gray shaded area.

The Plume ssts with Wpi < 3 are dominantly located on the left-hand side of the Storm. So for an equivalent Wpi value there is a clear reduced cooling on the Left hand side of the plume compared to open-ocean waters

=> Good demonstration of the cooling inhibition by pre-storm ocean stratification

The Eastern Equatorial Atlantic freshwater Pools

Figure 1. Map of the Gulf of Guinea and Southeast Atlantic Ocean indicating the three areas (light shadow) from which the sea surface temperatures are averaged: 'Guinea' (0°-6°N, 0°-10°E), 'Gabon-Angola' (0°-10°S) and 'Benguela' (10°-20°S). Dark shadowed areas: fresh water pools of Guinean water and the Congo River plume. GC: Guinea current, SEC: south equatorial current, SECC: south equatorial counter current in normal years (full line) and during warm events (broken line), BC: Benguela current.

2010 SMOS Monthly L3 SSS -Jan 0.25°x0.25°

2010 SMOS Monthly L3 SSS -Feb 0.25°x0.25°

2010 SMOS Monthly L3 SSS -Mar 0.25°x0.25°

2010 SMOS Monthly L3 SSS -Apr 0.25°x0.25°

2010 SMOS Monthly L3 SSS -May 0.25°x0.25°

2010 SMOS Monthly L3 SSS -Jun 0.25°x0.25°

2010 SMOS Monthly L3 SSS -Jul 0.25°x0.25°

2010 SMOS Monthly L3 SSS -Aug 0.25°x0.25°

2010 SMOS Monthly L3 SSS -Sep 0.25°x0.25°

2010 SMOS Monthly L3 SSS -Oct 0.25°x0.25°

2010 SMOS Monthly L3 SSS -Nov 0.25°x0.25°

Congo Plume Seasonal Cycle

2010 SMOS Monthly L3 SSS -Dec 0.25°x0.25°

Correlation SSS at the mouth with River Discharge at Brazaville

1 pss Bias: 5 m depth TSG versus SMOS surface ?

Comparison with Pirata Mooring time series

•Overall Statistics at Pirata

Figure 14: Monthly SSS of the SMOS L3 composite at 0.25°x0.25° as function of Pirata monthly

averaged SSS data at 1 m depth. The data for all the eighteen pirata moorings and all months of year 2010 are combined together.

TheTropical Pacific freshwater Pools

2010 SMOS Monthly L3 SSS -Jan 0.25°x0.25°

2010 SMOS Monthly L3 SSS -Apr 0.25°x0.25°

2010 SMOS Monthly L3 SSS -Oct 0.25°x0.25°

2010 SMOS Monthly L3 SSS -Jul 0.25°x0.25°

TAO Mooring Array

TAO Mooring Array

TAO Mooring Array

TAO Mooring Array

TAO Mooring Array

Monthly L3 0.25° res standard deviation error at TAO Mooring Array

Detection of the Eastern Edge of the Equatorial Pacific Warm Pool

longitude-time plots of the 3°N-3°S averaged SSS and SST

Seasonal dynamics of Sea Surface Salinity off Panama: the Far Eastern Pacific Fresh Pool

Alory et al.=> in preparation JGR 2012

Impact of Rain on In situ SSS measurements : large salinity stratification in case of rain

Hénocq et al., JAOT, 2010

Example of SSS freshening in Atlantic ITCZ

See poster Morrisset, et al; Reverdin et al. JGR 2011, in revision

SSS rain-freshening temporal evolution as seen by 60

drifters in the tropical Oceans

SSS temporal evolution after a freshening event (time 0)

Satellite Rain Rates (SSM/I, TMI, AMSRE (www.ssmi.com)) colocated with floats SSS

Figure 7: Average cycle of salinity (upper panel) among 60 salinity drop events (relative to a common time of beginning of event). Individual records are shifted to a common salinity value at the initial drop time and the magnitude of the drop is adjusted to the mean drop. The average is plotted as well as individual events. The associated average reported rainfall (mm/hour) is plotted in the lower panel by 2-hour average, as well as the individual values at the exact time of reports.

See poster Morrisset, et al; Reverdin et al. JGR 2011, in revision

SMOS SSS & Rain colocation

- SMOS SSS 40km resolution retrieved from ~150 Tbs measured at various incidence angles, 2 polarisations=> SSS and ECMWF adjusted wind speed
- Rain Rate deduced from SSMI F16 and F17 (RemSS version 7); 32km spatial resolution
- Colocation of SMOS SSS and SSMI Rain Rate: Maximum of RR (within -5hours and +1hour to SMOS time) and falling in the SMOS ISEA grid point
- Statistics of SSSsmos-SSSargo depending on Maximum RR within -5h/+1h of SMOS SSS

Boutin et al. 2011

 $[S_{\it smos}\text{-}S_{\it argo}] \text{ - July 2010 - [5N15N-110W180W] - Orbit A - Coloc[R=50km; \Delta T \pm 5 days]}$

fresh water SSS anomalies detected by SMOS

First Annual Average SSS map Measured from Space

SMOS 2010 Annual Average 0.25°x0.25° SSS

Next steps:

galactic noise model improvments, Direct sun masking or correction Roughness correction refinement

L4 merging with :

in situ Aquarius

Thanks for your attention !

